
Metadb 1.0: an open-source data platform
for analytics

Nassib Nassar
Director of Metadb Analytics Platform

Head of Research
Index Data ApS



Overview of Metadb
Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics.

The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO’s database, Metadb updates its
database correspondingly, with a few differences:
▶ No overwrite: deleted data are preserved and timestamped.
▶ JSON and MARC data are transformed into tables to simplify

cross-domain SQL queries.
▶ With ReShare, data are combined to support cross-tenant

consortial queries.
This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users. Metadb also
allows users to import external data sets, and in general organizes
its database into a shared workspace where users can partner on
reporting and analytics.



Overview of Metadb
Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from.

When
state changes occur in FOLIO’s database, Metadb updates its
database correspondingly, with a few differences:
▶ No overwrite: deleted data are preserved and timestamped.
▶ JSON and MARC data are transformed into tables to simplify

cross-domain SQL queries.
▶ With ReShare, data are combined to support cross-tenant

consortial queries.
This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users. Metadb also
allows users to import external data sets, and in general organizes
its database into a shared workspace where users can partner on
reporting and analytics.



Overview of Metadb
Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO’s database, Metadb updates its
database correspondingly, with a few differences:

▶ No overwrite: deleted data are preserved and timestamped.
▶ JSON and MARC data are transformed into tables to simplify

cross-domain SQL queries.
▶ With ReShare, data are combined to support cross-tenant

consortial queries.
This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users. Metadb also
allows users to import external data sets, and in general organizes
its database into a shared workspace where users can partner on
reporting and analytics.



Overview of Metadb
Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO’s database, Metadb updates its
database correspondingly, with a few differences:
▶ No overwrite: deleted data are preserved and timestamped.

▶ JSON and MARC data are transformed into tables to simplify
cross-domain SQL queries.

▶ With ReShare, data are combined to support cross-tenant
consortial queries.

This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users. Metadb also
allows users to import external data sets, and in general organizes
its database into a shared workspace where users can partner on
reporting and analytics.



Overview of Metadb
Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO’s database, Metadb updates its
database correspondingly, with a few differences:
▶ No overwrite: deleted data are preserved and timestamped.
▶ JSON and MARC data are transformed into tables to simplify

cross-domain SQL queries.

▶ With ReShare, data are combined to support cross-tenant
consortial queries.

This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users. Metadb also
allows users to import external data sets, and in general organizes
its database into a shared workspace where users can partner on
reporting and analytics.



Overview of Metadb
Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO’s database, Metadb updates its
database correspondingly, with a few differences:
▶ No overwrite: deleted data are preserved and timestamped.
▶ JSON and MARC data are transformed into tables to simplify

cross-domain SQL queries.
▶ With ReShare, data are combined to support cross-tenant

consortial queries.

This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users. Metadb also
allows users to import external data sets, and in general organizes
its database into a shared workspace where users can partner on
reporting and analytics.



Overview of Metadb
Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO’s database, Metadb updates its
database correspondingly, with a few differences:
▶ No overwrite: deleted data are preserved and timestamped.
▶ JSON and MARC data are transformed into tables to simplify

cross-domain SQL queries.
▶ With ReShare, data are combined to support cross-tenant

consortial queries.
This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users.

Metadb also
allows users to import external data sets, and in general organizes
its database into a shared workspace where users can partner on
reporting and analytics.



Overview of Metadb
Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO’s database, Metadb updates its
database correspondingly, with a few differences:
▶ No overwrite: deleted data are preserved and timestamped.
▶ JSON and MARC data are transformed into tables to simplify

cross-domain SQL queries.
▶ With ReShare, data are combined to support cross-tenant

consortial queries.
This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users. Metadb also
allows users to import external data sets, and in general organizes
its database into a shared workspace where users can partner on
reporting and analytics.



Levels of interaction (examples)
Reporting
▶ Connect using the LDP Reporting App within FOLIO/ReShare
▶ Query data and run reports using web UI (SQL not required)

Beginning SQL analytics
▶ Connect using cloud database client such as CloudBeaver
▶ Query data using web UI or basic SQL
▶ Run and query reports using basic SQL

Intermediate SQL analytics
▶ Connect using desktop database client such as DBeaver
▶ Query data and run reports using SQL
▶ Create reports using SQL and share them with other users



Levels of interaction (examples)
Reporting
▶ Connect using the LDP Reporting App within FOLIO/ReShare
▶ Query data and run reports using web UI (SQL not required)

Beginning SQL analytics
▶ Connect using cloud database client such as CloudBeaver
▶ Query data using web UI or basic SQL
▶ Run and query reports using basic SQL

Intermediate SQL analytics
▶ Connect using desktop database client such as DBeaver
▶ Query data and run reports using SQL
▶ Create reports using SQL and share them with other users



Levels of interaction (examples)
Reporting
▶ Connect using the LDP Reporting App within FOLIO/ReShare
▶ Query data and run reports using web UI (SQL not required)

Beginning SQL analytics
▶ Connect using cloud database client such as CloudBeaver
▶ Query data using web UI or basic SQL
▶ Run and query reports using basic SQL

Intermediate SQL analytics
▶ Connect using desktop database client such as DBeaver
▶ Query data and run reports using SQL
▶ Create reports using SQL and share them with other users



A sample SQL query
Suppose we have a query that counts the number of loans in a
library for each circulated item within a range of dates:

SELECT item_id ,
count (*) AS loan_count

FROM folio_circulation.loan__t
WHERE ’2023 -01 -01’ <= loan_date AND

loan_date < ’2024 -01 -01’
GROUP BY item_id;

The range of dates is defined by a start and end date, in this case,
’2023-01-01’ and ’2024-01-01’.

We can make this query more general by defining the start and end
dates as parameters in a user-defined function.



A sample SQL query
Suppose we have a query that counts the number of loans in a
library for each circulated item within a range of dates:

SELECT item_id ,
count (*) AS loan_count

FROM folio_circulation.loan__t
WHERE ’2023 -01 -01’ <= loan_date AND

loan_date < ’2024 -01 -01’
GROUP BY item_id;

The range of dates is defined by a start and end date, in this case,
’2023-01-01’ and ’2024-01-01’.

We can make this query more general by defining the start and end
dates as parameters in a user-defined function.



A sample SQL query
Suppose we have a query that counts the number of loans in a
library for each circulated item within a range of dates:

SELECT item_id ,
count (*) AS loan_count

FROM folio_circulation.loan__t
WHERE ’2023 -01 -01’ <= loan_date AND

loan_date < ’2024 -01 -01’
GROUP BY item_id;

The range of dates is defined by a start and end date, in this case,
’2023-01-01’ and ’2024-01-01’.

We can make this query more general by defining the start and end
dates as parameters in a user-defined function.



A sample SQL query
Suppose we have a query that counts the number of loans in a
library for each circulated item within a range of dates:

SELECT item_id ,
count (*) AS loan_count

FROM folio_circulation.loan__t
WHERE ’2023 -01 -01’ <= loan_date AND

loan_date < ’2024 -01 -01’
GROUP BY item_id;

The range of dates is defined by a start and end date, in this case,
’2023-01-01’ and ’2024-01-01’.

We can make this query more general by defining the start and end
dates as parameters in a user-defined function.



The query as a function

CREATE FUNCTION lisa.count_loans(
start_date date DEFAULT ’2000 -01 -01’,
end_date date DEFAULT ’2050 -01 -01’)

RETURNS TABLE(
item_id uuid ,
loan_count integer) AS

$$
SELECT item_id ,

count (*) AS loan_count
FROM folio_circulation.loan__t
WHERE start_date <= loan_date AND

loan_date < end_date
GROUP BY item_id

$$
LANGUAGE SQL;



Calling the function
Since the function returns a table, a good way to call it is to
SELECT from it:

SELECT * FROM lisa.count_loans(
start_date => ’2022 -01 -01’,
end_date => ’2023 -01 -01’);

Note that p => ap defines the parameter name p for argument ap.
This should not be confused with the inequality operator in x >= y
which means x is greater than or equal to y .

Function parameters that have default values can be omitted. For
example

SELECT * FROM lisa.count_loans(
start_date => ’2023 -01 -01’);

omits the parameter

end_date date DEFAULT ’2050 -01 -01’



Calling the function
Since the function returns a table, a good way to call it is to
SELECT from it:

SELECT * FROM lisa.count_loans(
start_date => ’2022 -01 -01’,
end_date => ’2023 -01 -01’);

Note that p => ap defines the parameter name p for argument ap.
This should not be confused with the inequality operator in x >= y
which means x is greater than or equal to y .

Function parameters that have default values can be omitted. For
example

SELECT * FROM lisa.count_loans(
start_date => ’2023 -01 -01’);

omits the parameter

end_date date DEFAULT ’2050 -01 -01’



Sharing the function
Suppose that a user lisa has created lisa.count_loans and
would like to share it with the users celia and rosalind, so that
they also can call it.

First we have to grant them the privilege to use the lisa schema
(unless that has been done before):

GRANT USAGE ON SCHEMA lisa
TO celia , rosalind;

Then grant the privilege to execute the function:

GRANT EXECUTE ON FUNCTION lisa.count_loans
TO celia , rosalind;

This method can be used with the LDP Reporting App, or a
web-based database tool such as CloudBeaver, to make reports
available to users that do not have a database tool installed
locally.



Sharing the function
Suppose that a user lisa has created lisa.count_loans and
would like to share it with the users celia and rosalind, so that
they also can call it.

First we have to grant them the privilege to use the lisa schema
(unless that has been done before):

GRANT USAGE ON SCHEMA lisa
TO celia , rosalind;

Then grant the privilege to execute the function:

GRANT EXECUTE ON FUNCTION lisa.count_loans
TO celia , rosalind;

This method can be used with the LDP Reporting App, or a
web-based database tool such as CloudBeaver, to make reports
available to users that do not have a database tool installed
locally.



Sharing the function
Suppose that a user lisa has created lisa.count_loans and
would like to share it with the users celia and rosalind, so that
they also can call it.

First we have to grant them the privilege to use the lisa schema
(unless that has been done before):

GRANT USAGE ON SCHEMA lisa
TO celia , rosalind;

Then grant the privilege to execute the function:

GRANT EXECUTE ON FUNCTION lisa.count_loans
TO celia , rosalind;

This method can be used with the LDP Reporting App, or a
web-based database tool such as CloudBeaver, to make reports
available to users that do not have a database tool installed
locally.



Sharing the function
Suppose that a user lisa has created lisa.count_loans and
would like to share it with the users celia and rosalind, so that
they also can call it.

First we have to grant them the privilege to use the lisa schema
(unless that has been done before):

GRANT USAGE ON SCHEMA lisa
TO celia , rosalind;

Then grant the privilege to execute the function:

GRANT EXECUTE ON FUNCTION lisa.count_loans
TO celia , rosalind;

This method can be used with the LDP Reporting App, or a
web-based database tool such as CloudBeaver, to make reports
available to users that do not have a database tool installed
locally.



LDP Reporting App



Interactive dashboards using Tableau



Metadb architecture with one data source



Split hosting



Metadb roadmap

1.2 (January 2024)
▶ Improved performance of synchronization
▶ Support for multiple tenants in a shared database server

1.3 (July 2024)
▶ Data anonymization
▶ Granular user permissions
▶ Configuration of job scheduler

1.4 (January 2025)
▶ Support for multiple data sources
▶ Improved concurrency control & process scheduling



Migrating from LDP: data updates and data types

LDP Metadb
FOLIO/ReShare FOLIO FOLIO & ReShare
Source tables Daily snapshots Continuously
Historical data Daily snapshots Continuously
MARC transform Daily Every few hours
Derived tables Daily Daily

Table: Data updates

LDP 1.x LDP 2.x Metadb
JSON json jsonb jsonb
UUID varchar(36) uuid uuid

Table: Data types



Porting a query from LDP to Metadb
Step 1: Update table names in FROM clauses to use Metadb tables.

SELECT id FROM user_groups; [LDP]
SELECT id FROM folio_users.groups; [Metadb]

In LDP, JSON data and columns extracted from the JSON data are
stored together in one table. In Metadb, the extracted columns are
in a separate table ending in “__t”. If a query needs data from both
tables, it is simpler and more efficient to use the function
jsonb_extract_path_text() to extract the JSON data, rather
than joining the two tables together to get the extracted columns.

SELECT jsonb_extract_path_text(jsonb , ’desc’),
creation_date

FROM folio_users.groups;



Porting a query from LDP to Metadb
Step 1: Update table names in FROM clauses to use Metadb tables.

SELECT id FROM user_groups; [LDP]
SELECT id FROM folio_users.groups; [Metadb]

In LDP, JSON data and columns extracted from the JSON data are
stored together in one table. In Metadb, the extracted columns are
in a separate table ending in “__t”. If a query needs data from both
tables, it is simpler and more efficient to use the function
jsonb_extract_path_text() to extract the JSON data, rather
than joining the two tables together to get the extracted columns.

SELECT jsonb_extract_path_text(jsonb , ’desc’),
creation_date

FROM folio_users.groups;



Porting a query from LDP to Metadb
Step 2: The “data” column in LDP, which refers to JSON data,
should be changed to “jsonb” (or “content” in the case of the
SRS tables).

SELECT data FROM user_groups; [LDP]
SELECT jsonb FROM folio_users.groups; [Metadb]

Step 3: Calls to the function json_extract_path_text() should
be changed to jsonb_extract_path_text(), etc.

SELECT json_extract_path_text(data , ’group’)
FROM user_groups; [LDP]

SELECT jsonb_extract_path_text(jsonb , ’group’)
FROM folio_users.groups; [Metadb]



Porting a query from LDP to Metadb
Step 2: The “data” column in LDP, which refers to JSON data,
should be changed to “jsonb” (or “content” in the case of the
SRS tables).

SELECT data FROM user_groups; [LDP]
SELECT jsonb FROM folio_users.groups; [Metadb]

Step 3: Calls to the function json_extract_path_text() should
be changed to jsonb_extract_path_text(), etc.

SELECT json_extract_path_text(data , ’group’)
FROM user_groups; [LDP]

SELECT jsonb_extract_path_text(jsonb , ’group’)
FROM folio_users.groups; [Metadb]



https :// metadb.dev/doc


