Metadb 1.0: an open-source data platform
for analytics

Nassib Nassar
Director of Metadb Analytics Platform
Head of Research
Index Data ApS

DATA

Overview of Metadb

Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics.

DATA

Overview of Metadb

Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from.

DATA

Overview of Metadb

Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO's database, Metadb updates its
database correspondingly, with a few differences:

DATA

Overview of Metadb

Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO's database, Metadb updates its
database correspondingly, with a few differences:

» No overwrite: deleted data are preserved and timestamped.

DATA

Overview of Metadb

Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO's database, Metadb updates its
database correspondingly, with a few differences:

» No overwrite: deleted data are preserved and timestamped.

» JSON and MARC data are transformed into tables to simplify

cross-domain SQL queries.

DATA

Overview of Metadb

Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO's database, Metadb updates its
database correspondingly, with a few differences:
» No overwrite: deleted data are preserved and timestamped.
» JSON and MARC data are transformed into tables to simplify
cross-domain SQL queries.
» With ReShare, data are combined to support cross-tenant
consortial queries.

DATA

Overview of Metadb

Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO's database, Metadb updates its
database correspondingly, with a few differences:
» No overwrite: deleted data are preserved and timestamped.
» JSON and MARC data are transformed into tables to simplify
cross-domain SQL queries.
» With ReShare, data are combined to support cross-tenant
consortial queries.
This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users.

DATA

Overview of Metadb

Metadb is open-source software that continuously reads data from
transaction processing databases or other dynamic data sources,
and helps with integrating the data within its own database to
support analytics. The internal databases of FOLIO and ReShare
are examples of data sources that Metadb can read from. When
state changes occur in FOLIO's database, Metadb updates its
database correspondingly, with a few differences:
» No overwrite: deleted data are preserved and timestamped.
» JSON and MARC data are transformed into tables to simplify
cross-domain SQL queries.
» With ReShare, data are combined to support cross-tenant
consortial queries.
This enhanced view of FOLIO data as well as the data in their
original form are both accessible to Metadb users. Metadb also
allows users to import external data sets, and in general organizes
its database into a shared workspace where users can partner on
reporting and analytics.

DATA

Levels of interaction (examples)

Reporting
» Connect using the LDP Reporting App within FOLIO/ReShare
» Query data and run reports using web Ul (SQL not required)

DATA

Levels of interaction (examples)

Reporting
» Connect using the LDP Reporting App within FOLIO/ReShare
» Query data and run reports using web Ul (SQL not required)

Beginning SQL analytics
» Connect using cloud database client such as CloudBeaver
» Query data using web Ul or basic SQL
» Run and query reports using basic SQL

DATA

Levels of interaction (examples)

Reporting
» Connect using the LDP Reporting App within FOLIO/ReShare
» Query data and run reports using web Ul (SQL not required)

Beginning SQL analytics
» Connect using cloud database client such as CloudBeaver
» Query data using web Ul or basic SQL
» Run and query reports using basic SQL

Intermediate SQL analytics
» Connect using desktop database client such as DBeaver
» Query data and run reports using SQL
> Create reports using SQL and share them with other users ot

DATA

A sample SQL query

Suppose we have a query that counts the number of loans in a
library for each circulated item within a range of dates:

DATA

A sample SQL query

Suppose we have a query that counts the number of loans in a
library for each circulated item within a range of dates:

SELECT item_id,
count (x) AS loan_count
FROM folio_circulation.loan__t
WHERE ’2023-01-01’ <= loan_date AND
loan_date < ’2024-01-01"

GROUP BY item_id;

DATA

A sample SQL query

Suppose we have a query that counts the number of loans in a
library for each circulated item within a range of dates:

SELECT item_id,
count (x) AS loan_count
FROM folio_circulation.loan__t
WHERE ’2023-01-01’ <= loan_date AND
loan_date < ’2024-01-01"

GROUP BY item_id;

The range of dates is defined by a start and end date, in this case,
’2023-01-01’ and ’2024-01-01".

DATA

A sample SQL query

Suppose we have a query that counts the number of loans in a
library for each circulated item within a range of dates:

SELECT item_id,
count (x) AS loan_count
FROM folio_circulation.loan__t
WHERE ’2023-01-01’ <= loan_date AND
loan_date < ’2024-01-01"

GROUP BY item_id;
The range of dates is defined by a start and end date, in this case,
’2023-01-01’ and ’2024-01-01".

We can make this query more general by defining the start and end
dates as parameters in a user-defined function.

DATA

The query as a function

CREATE FUNCTION lisa.count_loans(
start_date date DEFAULT ’2000-01-01°,
end_date date DEFAULT ’2050-01-017)

RETURNS TABLE(
item_id uuid,
loan_count integer) AS

$$

SELECT item_id,

count (*) AS loan_count
FROM folio_circulation.loan__t
WHERE start_date <= loan_date AND
loan_date < end_date
GROUP BY item_id
$$
LANGUAGE SQL;

DATA

Calling the function

Since the function returns a table, a good way to call it is to
SELECT from it:

SELECT * FROM 1lisa.count_loans(
start_date => ’2022-01-01",
end_date => ’2023-01-01");

Note that p => a,, defines the parameter name p for argument a,.
This should not be confused with the inequality operator in x >=y
which means x is greater than or equal to y.

DATA

Calling the function

Since the function returns a table, a good way to call it is to
SELECT from it:

SELECT * FROM 1lisa.count_loans(
start_date => ’2022-01-01",
end_date => ’2023-01-01");

Note that p => a,, defines the parameter name p for argument a,.
This should not be confused with the inequality operator in x >=y
which means x is greater than or equal to y.

Function parameters that have default values can be omitted. For
example

SELECT * FROM lisa.count_loans(
start_date => ’2023-01-01");

. (]
omits the parameter

end_date date DEFAULT ’2050-01-01°

DATA

Sharing the function

Suppose that a user 1isa has created lisa.count_loans and
would like to share it with the users celia and rosalind, so that
they also can call it.

DATA

Sharing the function

Suppose that a user 1isa has created lisa.count_loans and
would like to share it with the users celia and rosalind, so that
they also can call it.

First we have to grant them the privilege to use the lisa schema
(unless that has been done before):

GRANT USAGE ON SCHEMA 1lisa
TO celia, rosalind;

DATA

Sharing the function

Suppose that a user 1isa has created lisa.count_loans and
would like to share it with the users celia and rosalind, so that
they also can call it.

First we have to grant them the privilege to use the lisa schema
(unless that has been done before):

GRANT USAGE ON SCHEMA 1lisa
TO celia, rosalind;

Then grant the privilege to execute the function:

GRANT EXECUTE ON FUNCTION lisa.count_loans
TO celia, rosalind;

DATA

Sharing the function

Suppose that a user 1isa has created lisa.count_loans and
would like to share it with the users celia and rosalind, so that
they also can call it.

First we have to grant them the privilege to use the lisa schema
(unless that has been done before):

GRANT USAGE ON SCHEMA lisa
TO celia, rosalind;

Then grant the privilege to execute the function:

GRANT EXECUTE ON FUNCTION lisa.count_loans
TO celia, rosalind;

This method can be used with the LDP Reporting App, or a
web-based database tool such as CloudBeaver, to make reports
available to users that do not have a database tool installed
locally.

DATA

LDP Reporting App

LDP Query Builder

®1tem count @

(O Openquery (+) New query

(O Run SQL query from Git

Name
Item Count

A About this query
URL

http:

Description
To provide summary item and piece counts for non-electronic resources cataloged in
the inventory by various filters.

4 Parameters

Item created start date Item status.

(35800401 [=)] [[activerinactiver,on hota] [] I |
Item created end date Nature of content terms

(‘20880401 [=)] [Frestboor oumal” ave] 1 ‘
(=) | | |
(=) o | |

Reset parameters

Require confirmation
(maybe?)

DATA

Interactive dashboards using Tableau

@ CORNELLUNIVERSITYLIBRARY

6/23/2023

SUMMARY

Total Circulation Transactions by Month and Day of Week (Checkins and Checkouts) Sdlzial e Ve

FY2023

2022 2023
Q3 4 Q1 Q2

August | September | October | November | December | Jonuary | February

Tuesday
Wednesday
Thursdey

Friday

Saturday

Sunday 1628 ‘
Grand Total % 26,427 34,074 31,463 36,395
Monday : Lo _/_v_—V—N\—/\—'W-\/-_’\/_
Tuesday ER WW
3
£
Vednesday 5 o0 .__/""-"—_'V*’_,.-/"*-—"‘_\/—\/_—
K |
Thursdsy H 000 MMM
Friday : 1,000 w——-—/\/\/\——\———\,—.—/\,\
Saturday 5 1000
< " ——— e e i
Sunday s
3 1,000 —— T —, e ———

Metadb architecture with one data source

Metadb
Database

1

Metadb

l

Kafka
Event Store

1

Kafka Connect
Debezium

l

FOLIO/ReShare
Database

Data flow

DATA

Split hosting

Hosting A

Metadb
Database

1

Metadb

Kafka
Event Store

1

Kafka Connect
Debezium

!

FOLIO/ReShare
Database

Data flow

DATA

Metadb roadmap

1.2 (January 2024)
» Improved performance of synchronization

» Support for multiple tenants in a shared database server

1.3 (July 2024)
» Data anonymization
» Granular user permissions

» Configuration of job scheduler

1.4 (January 2025)

» Support for multiple data sources

» Improved concurrency control & process scheduling

DATA

Migrating from LDP: data updates and data types

LDP Metadb
FOLIO/ReShare FOLIO FOLIO & ReShare
Source tables Daily snapshots Continuously
Historical data Daily snapshots Continuously
MARC transform Daily Every few hours
Derived tables Daily Daily

Table: Data updates

LDP 1.x | LDP 2.x | Metadb
JSON json jsonb jsonb
UUID | varchar(36) uuid uuid

Table: Data types

DATA

Porting a query from LDP to Metadb

Step 1: Update table names in FROM clauses to use Metadb tables.

SELECT id FROM user_groups; [LDP]
SELECT id FROM folio_users.groups; [Metadb]

DATA

Porting a query from LDP to Metadb

Step 1: Update table names in FROM clauses to use Metadb tables.

SELECT id FROM user_groups; [LDP]
SELECT id FROM folio_users.groups; [Metadb]

In LDP, JSON data and columns extracted from the JSON data are
stored together in one table. In Metadb, the extracted columns are
in a separate table ending in “__t". If a query needs data from both
tables, it is simpler and more efficient to use the function
jsonb_extract_path_text() to extract the JSON data, rather
than joining the two tables together to get the extracted columns.

SELECT jsonb_extract_path_text(jsonb, ’desc’),
creation_date
FROM folio_users.groups;

DATA

Porting a query from LDP to Metadb

Step 2: The "data” column in LDP, which refers to JSON data,

should be changed to “jsonb” (or “content” in the case of the
SRS tables).

SELECT data FROM user_groups; [LDP]
SELECT jsonb FROM folio_users.groups; [Metadb]

DATA

Porting a query from LDP to Metadb

Step 2: The "data” column in LDP, which refers to JSON data,

should be changed to “jsonb” (or “content” in the case of the
SRS tables).

SELECT data FROM user_groups; [LDP]
SELECT jsonb FROM folio_users.groups; [Metadb]

Step 3: Calls to the function json_extract_path_text() should
be changed to jsonb_extract_path_text(), etc.

SELECT json_extract_path_text(data, ’group’)

FROM user_groups; [LDP]
SELECT jsonb_extract_path_text(jsonb, ’group’)
FROM folio_users.groups; [Metadb]

DATA

Contents

1

N

User guide
1.1. Getting started

1.2. Main tables

1.3. Current tables

1.4. Transformed tables

1.5. Comparing table types

1.6. User workspaces

1.7. Working with data types

1.8. Creating reports

1.9. Database views

1.10. Querying system information

. Reference

2.1. Stream processor
2.1.1. Data type conversion
2.2, Functions
2.2.1. System information
23, System tables
2.3.1. metadb.base._table
2.3.2. metadb.log
2.3.3. metadb.table_update
2.4. External SQL directives
2.4.1. ~metadb:require
2.4.2. -metadb:table
2.5. Statements
2.5.1. ALTER DATA SOURCE
2.5.2. AUTHORIZE

Metadb Documentation

1. User guide

This is an overview of using Metadb. We assume familiarity with databases and
the basics of SQL.

1.1. Getting started

Metadb extends PostgreSQL with features to support analytics such as streaming
data sources, data model transforms, and historical data. The data contained

in the Metadb database originally come from another place: a data source
which could be, for example, a transaction-processing database or a sensor
network. Metadb updates its database continuously based on state changes in
external data sources.

1.2. Main tables

Tables generated by Metadb have at least these metadata columns, with names
that begin with two underscores:

« __id isasurrogate key that identifies a row in the table.

« _ start is the date and time when the row of data was generated.

https://metadb.dev/doc

